If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3a^2+17a+20=0
a = 3; b = 17; c = +20;
Δ = b2-4ac
Δ = 172-4·3·20
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(17)-7}{2*3}=\frac{-24}{6} =-4 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(17)+7}{2*3}=\frac{-10}{6} =-1+2/3 $
| H=-4.9t^+44.1t | | 24x=0,6 | | 2x-8=2-2x | | 3+3a=18 | | (a-4)=(a-a) | | 3^x=16 | | (x^2-10)^2-3(x^2-10)+4=0 | | x/3+1/4=x/2-1/5 | | -1/x=-7/2+2/x | | 1.1*x=10 | | 3x+1=7x+x/2 | | 3-5x+2x=6x+5 | | 6·x=42 | | 2-16s=6(-3s+2) | | 32+6x=10-25x | | 2+16t=6(-3t+2) | | 2(3x-1)=2(x-5) | | 2=16t=6(-3t+2) | | 4(z-3)-2z=2 | | (0,26-x)*(0,52-x)/x^2=0,35 | | Y=2/5•x | | 8y^2-y-9=0 | | (2x+1)/(3x-5)=0 | | (x-7)-2(3x+8)=3 | | 4x+8=-x+5 | | 5n+5=14 | | x2-0.75x+0.125=0 | | 3x+×^2=300 | | x+2÷3=1 | | 2x/3+4=5x/6-2 | | F(x)=-2x3+8x+3 | | (x+3)²=0 |